## **NEXTIRS**

# DAILY EDITORIAL ANALYSIS

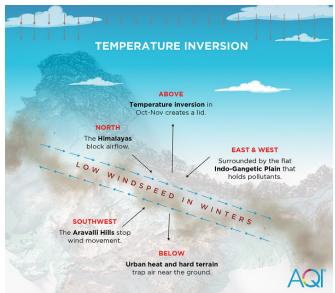
### **TOPIC**

## DELHI'S AIR POLLUTION CRISIS: A GROWING PUBLIC HEALTH CONCERN

www.nextias.com

## DELHI'S AIR POLLUTION CRISIS: A GROWING PUBLIC HEALTH CONCERN

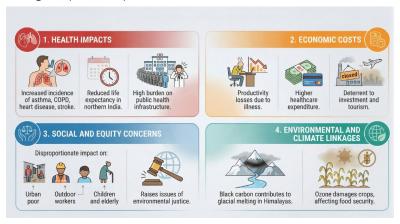
#### Context


• Delhi's toxic air has become a **full-blown public health emergency**, with local emissions and trapped winter pollutants driving the **worst AQI levels in years.** 

#### **Delhi's AQI**

- The air quality index (AQI) has stayed above 450 for days, with grey-brown skies showing no sign of clearing.
  - International indexes suggest the AQI may be closer to 700.
  - An air quality index (AQI) reading between 51 and 100 is considered a 'satisfactory' category, 201 and 300 'poor', 301 and 400 'very poor', and 401 and 450 'severe'.
- **Invisible pollutants** have resulted in hazardous air quality across the northern regions of the Indian subcontinent, with no catch-all solution.
- A third comes from smoke and gases mixing in the air from vehicles and factories, a fifth from crop stubble and wood burning, and vehicles themselves add another 17%.
  - Coal, household fuels, and dust make up the rest.
- Delhi's wintertime spikes in AQI levels are caused by a **myriad of factors**, **worsened by unfavourable meteorological conditions** that trap pollutants close to the surface.

#### What's Really Causing Delhi's Air Quality Crisis?


- **Delhi's Topography:** Delhi is surrounded by natural barriers on two sides, in the north, the Himalayas and on the southwest side, the Aravalli Hills block wind movement.
  - As a result, polluted air cannot disperse and has nowhere to escape.
- **Temperature Inversion (Urban Heat Island Effect):** During winter, the air near the ground becomes cooler than the air above it.
  - This inversion layer traps pollutants (such as particulate matter and gases) close to the surface, preventing their vertical dispersion into the upper atmosphere.



- **Low Wind Speeds:** Winds are generally weaker in winter, which reduces horizontal dispersion of pollutants, allowing them to accumulate in the lower atmosphere.
- **Crop Residue Burning:** Each year, post-harvest stubble burning in neighbouring states like Punjab, Haryana, and western Uttar Pradesh releases large amounts of smoke and particulate matter.



- However, newly published data from the Central Pollution Control Board (CPCB) demonstrates that
  the proportional contribution of stubble burning to Delhi's PM2.5 in 2025 is negligible.
- Dust and Urban Pollution Entrapment: Local emissions from vehicles and combustion sources are the most significant contributors.
  - Urban dust and vehicular emissions linger longer in the atmosphere due to low boundary layer height in winter, compounding the pollution problem.



#### **Gaps in India's Current Policies to Curb Air Pollution**

- National Clean Air Programme (NCAP): Despite being the flagship program, only 31% of the 131 NCAP cities currently meet air quality standards, with just 14 of 43 NCAP cities achieving even 10% PM2.5 reduction between 2019-2021.
- **Power Plants:** Thermal power plants, which contribute approximately 60% of industrial particulate matter emissions, remain essentially uncontrolled through successive deadline extensions.
  - The initial 2017 deadline for Flue Gas Desulfurization (FGD) installation was extended to 2022, then again to 2025, and most recently to December 2027—marking the third delay since 2015.
- Vehicle Emission Testing System: A 2025 Comptroller and Auditor General (CAG) audit found that over 1.08 lakh vehicles received Pollution Under Control (PUC) certificates despite exceeding permissible limits for carbon monoxide and hydrocarbons.
  - The audit found zero government inspections of pollution-testing centers and no third-party audits ensuring compliance.
- **Budget Utilisation:** Between FY 2019-24, approx. 67% of NCAP funds were spent on road dust mitigation, while vehicular pollution control received only 14% and industrial pollution control received 0.61%.
  - This allocation pattern directly contradicts sectoral contribution data identifying vehicular and industrial emissions as primary pollution sources.
- Institutional Fragmentation: Multiple agencies operate with overlapping mandates but diffuse responsibility.
  - This fragmentation ensures that no single authority bears full responsibility for failure.

#### **China' Model to Curb Air Pollution**

- **Air Pollution:** China's air pollution crisis peaked around 2010–2013, especially in northern cities like Beijing, where PM2.5 often exceeded 500 µg/m³ (hazardous).
- **Targeted Plans:** China launched the Air Pollution Prevention and Control Action Plan (2013–17) and Blue Sky Protection Campaign (2018–20) with clear, time-bound pollution reduction targets and strict enforcement.
- Rapid Reduction in Coal Use: Shut thousands of small coal boilers, capped coal consumption in urban areas, upgraded power plants to ultra-low emissions, and shifted industries and households to cleaner fuels like gas and electricity.
- **Industrial Restructuring & Compliance:** Closed or relocated polluting units (steel, cement, aluminium), mandated pollution-control equipment, and implemented real-time emission monitoring directly linked to government servers.



- **Transport Reforms & EV Push:** Introduced stringent China V/VI emission norms, phased out old vehicles, restricted car ownership in cities, and created the world's largest electric vehicle ecosystem.
- Massive Expansion of Monitoring & Technology: Set up 1500+ air quality monitoring stations, published real-time AQI data, used satellites and AI to locate pollution hotspots, and enabled strong public and administrative accountability.
- Strong Enforcement & Local Government Accountability: Central inspection teams conducted surprise audits, imposed heavy fines, shut illegal units, and publicly named local governments that failed to meet targets—ensuring compliance through pressure and penalties.

#### **Great Smog of London**

- The **1952 Great Smog of London** lasted barely **five days**, yet it shocked policymakers into action. At least 4,000 lives were lost.
- **Primary Causes:** Extensive **coal burning** (domestic heating and power plants), industrial emissions, and stagnant weather conditions.
- Pollutants: High concentrations of **smoke (soot)** and **sulphur dioxide (SO<sub>2</sub>)**, forming dense smog.
- It forced Parliament to pass the **Clean Air Acts**, changing how cities were heated by restricting coal-burning and switching to natural gas, electricity, and smokeless fuel.

#### **Way Ahead**

- National Targets: India aims to reduce PM2.5 levels by 40% by 2026, but more detailed local data is needed for effective action, such as vehicle types, fuel used, and traffic patterns.
  - The current data gap affects fund utilization and makes air pollution a secondary concern for municipalities.
- **High-Impact Industrial Enforcement:** Strictly enforce coal power plant emission standards without deadline extensions, integrate biomass co-firing, and impose automatic penalties.
- Avoiding the "Western Trap": Over-reliance on high-tech solutions and urban-centric tools could divert attention from basic pollution sources like biomass burning, old industrial processes, and polluting vehicles.
- Focus on Implementation: Separate funding streams for research and immediate interventions are needed.
- **Global Guidance:** Countries like China, Brazil, California, and London offer lessons on contextual, tailored approaches.
  - India should innovate based on its own unique needs, focusing on federalism and informal economies.
- **Economically Viable Stubble Management:** Replace enforcement-only approaches with farmer-centric solutions—crop diversification, free machinery, biomass value chains, and income support during transition.
- Health-Based Standards and Monitoring: Progressively tighten National Ambient Air Quality Standards (NAAQS) toward WHO norms, integrate air quality data with epidemiological tracking, and ensure transparent, real-time public dashboards.

Source: BL

#### **Daily Mains Practice Question**

[Q] Despite multiple policy interventions, air quality outcomes in Delhi-NCR remain poor.

Analyse the key gaps in India's current air pollution control policies.